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LETTER TO THE EDITOR 

Asymptotic behaviour of the equilibrium pair correlation 
in the classical electron gas 

C Deutsch and Y Furutani 
Laboratoire de Physique des Plasmas, Universitt Paris XI, BLtiment 210, F 91405 Orsay, 
France 

Received 12 June 1975 

Abstract. The nonconvolution graphs, sometimes referred to as bridge graphs, which 
figure in the Mayer-Salpeter expansion of the potential of average force w2(r)  with respect 
to the plasma parameter, are systematically studied. They decrease at infinity faster than 
the first-order Debye graph e-'/r. An exact expression for w2(r )  which allows a systematic 
improvement of the hyper-netted chain (HNC) approximation is obtained. 

The optical diagnostics of hot and dense plasmas considered in the laser fusion pro- 
gramme (Chapline et al 1975) have recently prompted the need for an accurate knowledge 
of the asymptotic behaviour of the pair correlation function gz(r) of the classical one- 
component Coulomb gas. Recently several authors have investigated the structure of 
the expansion, with respect to the plasma parameter A = U(I,)/kBT with U(A,) an 
average interaction potential at screening (Debye) distance I,, of the potential of 
average force wJr) defined as 

gZ(r) = exp(wZ(r)/kBT), (1) 
in the two-dimensional (Deutsch and Lavaud 1973) and three-dimensional (del Rio 
and De Witt 1969, Cohen and Murphy 1969) cases. 

It is already known (authors cited above, Mitchell and Ninham 1968) that the 
longest convolution chains built from c (=O, . . . , n) Debye chains and (n- 1) simple 
bubbles (two Debye chains curved together) provide the most important contribution 
to the asymptotic behaviour of g2(r) as far as the convolution graphs of order n in A 
are considered. Also, Cooper (1973), Springer et a1 (1973) and Ng (1974) have been 
able to reproduce the Monte Carlo data for g2(r) (Brush et a1 1963, 1966, Hansen 1973) 
with the aid of the HNC equation with an amazing accuracy for nearly all values of A. 
These results appear as very comforting if one remembers that the sum of the Fourier 
transforms of the convolution chains with simple bubbles for all n reproduces the 
content of the HNC equation (del Rio and De Witt 1969). All these calculations have 
had to assume from the beginning that the HNC approach with only the convolution 
graphs retained (Van Leeuwen et al 1959) is the correct one. They then suffer from 
the lack of knowledge of the asymptotic behaviour of the bridge graphs systematically 
neglected in the derivation of the HNC equation. 

With the purpose of justifying that the above conjecture is correct, we rely ourselves 
upon the Mayer-Salpeter expansion (Salpeter 1958) of w2(r) recently used in the two- 
dimensional case (Deutsch and Lavaud 1973). In order to handle easily the asymptotic 
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behaviour of higher-order graphs ( n  2 3) without spurious difficulties associated with 
the short-range behaviour, we may replace, whenever necessary, the classical Coulomb 
interaction r - ’  with an effective one, taking into account the diffraction correction 
( h  = 0), ie r - ’ ( l  -e-cr) with C - (thermal De Broglie wavelength)-’. 

A graph of order n is given (Salpeter 1958) by its I Debye bonds and its k nodal 
points where at least three bonds merge in with I - k  = n. The first non-convolution 
and strongly connected graph is known to appear with n = 3 and their number together 
with the number of convolution chains and of mixed chains (Mitchell and Ninham 
1968) increases rapidly with n. The nth-order bridge graphs, generated by joining any 
two points (including the root points), a line and a point, or a line and a line in the 
( n  - 1)th-order bridge graphs, may all be derived from the third-order bridge graph. 
The Fourier transform convolution methods (del Rio and De Witt 1969, Cohen and 
Murphy 1969, Deutsch and Lavaud 1973, Mitchell and Ninham 1968), applied to the 
graphs containing at least one articulation point, have clarified that (i) at infinity they 
decrease more slowly than the p-bubbles (2 < p < n, k = 0) or the bridge graphs 
building them and that (ii) the dominant graph at infinity in this category for given 
1 2 2(n- 1) and k is the longest convolution chain with ( n  - 1) 2-bubbles and c 
( = O ,  1,. . . , n )  Debye lines in between. On the other hand, it may be easily shown that 
the graphs with n 6 I < 2(n- 1) contribute most significantly to the r -+ 0 range, while 
their asymptotic behaviour is controlled by p-bubbles with p 2 3. Their topological 
structure is already present at lower orders. Therefore they differ from the corres- 
ponding graphs by one or more lines only and their asymptotic decrease is faster. We 
are thus led to study the asymptotic behaviour of the bridge graphs. Using a method 
exploited by Mitchell and Ninham (1968) and its extended versions (Deutsch et a1 1975, 
Furutani and Deutsch 1975), we have been able to describe the Fourier transforms of 
the third- and fourth-order bridge graphs in the form A - B k 2  for lk12 << 1 (k  is the 
conjugate to r )  with A B  > 0. The asymptotic behaviour of a given bridge ( I ,  k )  graph 
is then written as 

lim bridge 2 Cfle-ar ‘r (2) 
r -  m 

where fi = A2/B,  c1 = (A/B)’” > 1 and 

C = ( -  l)’An[8n7/(2n2)”] or ( -  l)’An[2n7/(2n2)”- ‘1, 
according as no or one double bond is present. The result a > i which we have 
numerically obtained shows that these graphs decrease at infinity much faster than the 
first Debye term e-r/r. This result checks the HNC hypothesis for n = 4. The same 
techniques will apply again for n = 5, but it seems very difficult to proceed farther for 
n 2 6. We therefore address ourselves to an extension to the present situation of a 
remark due to Riddel and Uhlenbeck (1953) for short-range interactions which provides 
(Deutsch et a1 1975, Furutani and Deutsch 1975) 

/An e - U -  1)r 

lim lbridge graph ( I ,  k)l < - -, 
r -  CO ( 4 ~ ) ~  r 

for all n (3) 

where I = degree of convection, defined as a minimum number of nodal points to 
remove in order that a given connected graph be disconnected with respect to the root 
points. Equation (3) allows us to disregard in the asymptotic range not only the 
numerous multiply connected structures present at all 1 values, but also the shorter 
chains with the corresponding bridge graphs. The longest convolution chains made of 
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c (=O, 1,. . . , n) Debye chains and ( n -  1 )  2-bubbles with I 2 2(n-2) show the charac- 
teristic behaviour ( b  + c = k + 1 )  

Ann ! 1 (r/2Y-le-' 
lim (convolution graph (I, k)( z 
r+ m ( n - c ) ! c !  22(n-1)  (c - l)! (4) 

The comparison of equations (3) and (4) clearly shows the asymptotic pre-eminence of 
the convolution chain over all graphs with the same I 2 2(n- 1) and k, ie in all sub- 
classes (I, k) of importance for limr+m wz(r). Consequently for a given ( I ,  k) pair, the 
number of mixed chains with not too strongly connected bubble is comparable with 
(b+ l)!/(b+ 1 -c)!c!, so that their more rapid decrease makes them negligible with 
respect to equation (4). These results enable us to extend to all orders the representation 
of w2(r), obtained by del Rio and De Witt (1969), through an iteration to infinity of 
the second-order graphs. We generalize thus the pattern of the longest convolution 
chains built from (n - 1) 2-bubbles and replace one of these bubbles with a bridge graph 
of order n. When the latter is 12-reducible, its first non-nodal contribution with no 
Debye legs is subtracted out to ensure the k-summability in the infinite range. The 
required resummation is realized by the geometric series (Mitchell and Ninham 1968) 
running from n = 3 to n = x). Of course, the replacement of two and more simple 
2-bubbles is feasible, leading to the general expression (Deutsch et al 1975a, b) 

e-' 1 1 
dk k sin kr ___ { k': 1 1 + l / k 2  - G ( k ) / A  n = 3  

- G ( k ) -  1 A"Bb(k) 
n = 4  

where 

I ~ I ' < I  W 

drrs inkr  - 2: A ( A ) - B ( A ) k 2 ,  for all A. 
n = 2  n! 

In equation ( 5 )  are removed all the bridge graphs with multiple bonds through a short- 
range resummation to all orders of the graphs with a given topology, ie from the 
replacement of the Debye bond ( k 2  + 1)-' by the sum G(k)  of n-bubbles (Iwata 1960). 
We emphasize that the resulting graph decreases faster at infinity than the generic one 
with single bonds only. This remarkable result derives from the asymptotic behaviour 
displayed in equation (6). 

B,(k) is then reduced to the sum, at each order, of the nodal 12-irreducible topology 
with single bonds only, topology appearing for the first time at order n. On the other 
hand, Bn(k) represents the corresponding sum for the 12-reducible graphs (Mitchell and 
Ninham 1968). Next, the neglected chains (I < 2(n- 1)) with a more involved structure 
which decrease asymptotically much faster than the longest chains considered so far 
come into play, when in the denominator of the right-hand side of equation ( 5 )  we 
replace with G ( k ) / A  the customary 2-bubble term used by del Rio and De Witt (1969). 

As a result, the n-bubbles sum G(k) appears through the long-range resummation, 
in contradistinction to their attempts at introducing it from the beginning 'with the 
hands'. The subtracted terms do not include the 12-irreducible bridge graphs. The 
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above calculations give rise to the first corrections to the standard second-order 
expression (B,(k) = B;(k) = 0) in the form 

B, (k )  = -(0.34907 -0*10343k2) 

B,(k) = -(0.14912-0*040197k2) (7) 
Bk(k) = 2(0.13594-04089544k2). 

A detailed analysis (Deutsch et a1 1975, Furutani and Deutsch 1975) with 2 < p < 4 
shows that the integrand in equation (5) may be written as 

G1 2: G, ‘v G, A > 1.  
k2 

k 2 + 1  

This expression explains quite well the success of the usual HNC techniques using 
G, = G2 = G = Go. Here Go is the numerical result reached at the end of the iteration 
process. Our more flexible expression (8) paves the way to a systematic improvement 
of the HNC approach. Finally, a critical value Ac giving the onset of short-range order 
could be obtained by solving 1 + 1/k2-G(k)/A = 0 with G(k)  of equation (6). Further 
discussion about this point will be given in great detail in a separate paper. 
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